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We consider the dynamics of a gas of free bosons within a semiclassical Fokker-Planck equation for which
we give a physical justification. In this context, we find a striking similarity between the Bose-Einstein
condensation in the canonical ensemble, and the gravitational collapse of a gas of classical self-gravitating
Brownian particles. The paper is mainly devoted to the complete study of the Bose-Einstein “collapse” within
this model. We find that at the Bose-Einstein condensation temperature Tc, the chemical potential ��t� vanishes
exponentially with a universal rate that we compute exactly. Below Tc, we show analytically that ���t�
vanishes linearly in a finite time tcoll. After tcoll, the mass of the condensate grows linearly with time and
saturates exponentially to its equilibrium value for large time. We also give analytical results for the density
scaling functions, for the corrections to scaling, and for the exponential relaxation time. Finally, we find that
the equilibration time �above Tc� and the collapse time tcoll �below Tc� both behave like −Tc

−3 ln �T−Tc�, near Tc.
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I. INTRODUCTION

The Bose-Einstein condensation is a fundamental result of
quantum statistics �1�. Below a critical temperature Tc, a fi-
nite fraction of bosons enters the ground state and a Bose-
Einstein condensate �BEC� forms �2�. Observation of Bose-
Einstein condensation in cold atomic samples was first
reported in 1995 by three different groups �3–5� in a vapor of
spin-polarized 87Rb, 7Li, and 23Na atoms. Apart from labo-
ratory experiments, another interesting application of Bose
condensation is related to the problem of boson star forma-
tion from the dark matter in the Universe �6�. In that case,
Bose star formation involves the axion as a dark matter
particle candidate �7�.

Since its discovery �8,9�, several authors have attempted
to develop kinetic models to describe the dynamical process
of the Bose-Einstein condensation. The dynamical evolution
of a homogeneous gas of bosons interacting only via “colli-
sions” can be studied using an appropriate form of the Bolt-
zmann equation �10–12� which takes into account the speci-
ficities of the Bose statistics. Since the gas is isolated and the
energy conserved, this model describes a microcanonical
situation. For this model, the Bose-Einstein condensation in
momentum space has been considered by Semikoz and
Tkachev �13� and Lacaze et al. �14�. Alternatively, the ca-
nonical evolution of a system of noninteracting bosons
coupled to a thermostat imposing the temperature can be
described by a semiclassical Fokker-Planck equation
�15–17�. For T�Tc, where Tc is the critical temperature, this
equation converges towards the Bose-Einstein distribution.
The main purpose of this paper is a complete study of this
equation below the critical temperature Tc, in order to under-
stand the dynamics of the formation of the condensate. Our
study is restricted to a spatially homogeneous system without
interaction at arbitrary temperature. Alternatively, the col-
lapsing dynamics of a trapped Bose-Einstein condensate
�BEC� with attractive interaction is often analyzed in terms
of the Gross-Pitaevskii �GP� or nonlinear Schrödinger equa-

tion �see, for instance �18��. This describes the formation of a
spatially inhomogeneous condensate at T=0. The GP equa-
tion can display a self-similar collapse, but it occurs in posi-
tion space while the system that we shall consider is spatially
homogeneous and the condensation occurs in k-space.

We thus consider a population of free bosons in d dimen-
sions with dispersion relation ��k�= k2

2m �we set m=1 in the
following�. This system is assumed to be strongly coupled to
a thermal bath at temperature T. Initially, at t=0, the system
is prepared in an initial state which can be, for instance, the
equilibrium distribution at some high temperature T0�T. At
infinite time, we expect the system to reach thermal equilib-
rium at temperature T, characterized by the Bose-Einstein
distribution if T�Tc �where Tc is the Bose-Einstein conden-
sation temperature�

�BE�k� =
1

exp��k2

2 + �� − 1
, �1�

where � is the chemical potential. Below Tc, the equilibrium
distribution is the Bose-Einstein distribution with �=0 plus a
Dirac peak at k=0 �the condensate� containing the rest of the
mass.

A. Bosonic Fokker-Planck equation

In this paper, we are interested in the temporal evolution
of the occupation number at momentum k, that we call
��k , t�, from an arbitrary initial state to the final equilibrium
state described above. If our particles were classical instead
of bosons �of course no condensate can appear in that case�,
the coupling to the thermal bath can be modelized by a ran-
dom force and a friction, and the evolution equation for the
momentum of a given particle is described by the Langevin
dynamics
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dk

dt
= −

k

�
+ f�t� , �2�

where f�t� is a delta-correlated random force, whose compo-
nents satisfy

�f i�t�f j�t��� = 2D�ij��t − t��, i, j � �1, . . . ,d� . �3�

In order to recover the equilibrium equipartition theorem, we
must impose the Einstein relation

D =
T

�
, �4�

where we have set the Boltzmann constant kB=1. The
Fokker-Planck equation describing the temporal evolution of
the momentum distribution reads

��

�t
=

1

�
�k�T�k� + �k� . �5�

Ultimately, the momentum distribution converges to the ex-
pected Boltzmann distribution

�B�k� = Z−1 exp	−
�k2

2

 . �6�

Now, coming back to the Bose gas, we ask whether a sto-
chastic dynamics can be introduced, which accurately de-
scribes the actual evolution �48�. Restraining ourselves to
noninteracting bosons, we shall see that one can give a rea-
sonable answer to this question. This will permit the descrip-
tion of the dynamical formation of the condensate at and
below Tc, which is the main purpose of this paper.

Several authors have considered this problem �16,17�. Let
us introduce a stochastic dynamics by defining the rate at
which particles with momentum k get a new momentum k�.
Following Kaniadakis et al. �16�, we assume the following
form of this rate:

W„k → k�… = w„k,k − k�…a���k,t��b���k�,t�� . �7�

Contrary to classical dynamics, we assume a dependence of
W�k→k�� with ��k , t� and ��k� , t�. Otherwise, we would
simply recover the Fokker-Planck equation Eq. �5�, as will
be shown below. In fact, W�k→k�� being a rate of departure
from the state of momentum k, it seems reasonable to as-
sume that it should not depend on the population of this
initial state. Hence we set a���=1. Then, one can write the
master equation describing the time evolution of the particle
distribution as

��

�t
=� ��„k�,t…W„k� → k… − �„k,t…W„k → k�…�dk�.

�8�

Assuming that the evolution is sufficiently slow and local,
such that the dynamics only permits values of k� close to k,
one can develop W�k→k�� in powers of k−k� in Eq. �8�.
After some algebra, and proceeding along the line of �16�,
one obtains a Fokker-Planck-like equation

��

�t
= �k�b����k�D�� + �b���J − D�b�����k�� , �9�

where assuming isotropy, we obtain

D�k� =
1

2d
� w�k,	k��	k�2d�	k� , �10�

J�k� = −� w�k,	k�	kd�	k� . �11�

We now make the simplification that the diffusion coefficient
D�k� is momentum-independent, and that the current J is
simply proportional to the particle’s velocity or momentum
k:

D�k� =
T

�
, �12�

J�k� =
k

�
. �13�

Going from Eq. �10� to Eq.�12� is a standard assumption in
kinetic theory. It is exactly achieved when w�k ,	k� is a
symmetric analytic function of �	k+k	t /�� /�	t, where 	t
is the discretized time step �ultimately 	t→0�. This function
must also decay fast enough so that its two first moments are
well-defined. In the case of the usual Brownian motion based
on the Langevin equations �2�, this function is simply a
Gaussian. Using Eqs. �12� and �13�, Eq. �9� becomes

��

�t
=

1

�
�k�T„b��� − �b����…�k� + �b���k� . �14�

Note that choosing b���=1, i.e., a transition rate which does
not depend on the population of the new momentum state,
leads to the standard Fokker-Planck equation, Eq. �5�, for
classical particles. In the general case, the stationary distri-
bution for k�0 satisfies

	1

�
−

b����
b���


�k� = − �k , �15�

which can be integrated, leading to

�

b���
= exp	−

�k2

2
− �
 , �16�

where � is an integration constant. In order to recover the
Bose-Einstein distribution Eq. �1�, we must make the unique
choice

b��� = 1 + � . �17�

We conclude that the classical rate is amplified by the factor
b����1, which translates the tendency of bosons to fill al-
ready occupied states. Note that the choice b���=1−� leads
to the Fermi-Dirac distribution �17�, where b��� now sup-
presses the probability to hop to an already occupied state, as
can be expected for fermions �note that a generalized
Fokker-Planck equation incorporating an exclusion principle
has been introduced independently in �27� in the very differ-
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ent context of the violent relaxation of collisionless
stellar systems and 2D vortices�. This approach has been
extended to the case of intermediate statistics, associated to
b���=1+
� �
� �−1,1�� �17�. It can also be generalized in
order to recover Tsallis statistical thermodynamics at equilib-
rium from a general kinetic equation �17,28�.

Focusing on the bosonic case, we finally obtain the asso-
ciated Fokker-Planck equation

��

�t
=

1

�
�k�T�k� + ��1 + ��k� . �18�

This bosonic Kramers equation could be directly obtained
from a modified Langevin equation

dk

dt
= −

k

�
�1 + ��k,t�� + f�t� , �19�

where the friction term which tends to move the momentum
toward k=0 now increases with the occupation number at
momentum k. In this context, the origin of the Bose-Einstein
instability is quite clear.

Finally, for later reference, we write the bosonic Fokker-
Planck equation for a spherically symmetric solution. Setting
�=1, we get

��

�t
= T	 �2�

�k2 +
d − 1

k

��

�k

 + d��1 + �� + k�2� + 1�

��

�k
.

�20�

For the integrated density

M�k,t� = �
0

k

��k�,t�k�d−1dk�, �21�

we obtain

�M

�t
= T	 �2M

�k2 −
d − 1

k

�M

�k

 + k

�M

�k
	 1

kd−1

�M

�k
+ 1
 .

�22�

It has to be noted that the bosonic Fokker-Planck equation
�18� valid for noninteracting bosons in contact with a heat
bath �canonical ensemble� is the counterpart of the bosonic
Boltzmann equation �10–12� valid for an isolated system of
interacting bosons �microcanonical ensemble�. These kinetic
equations are semiclassical equations where quantum me-
chanics enters only through the Bose-Einstein statistics. The
bosonic Boltzmann equation can be derived from a fully
quantum treatment as discussed in Sec. VI. The justification
of the bosonic Fokker-Planck equation from a fully quantum
mechanics treatment would be interesting but is beyond the
scope of this paper.

B. Analogy with a self-gravitating gas of Brownian particles

In a series of recent papers �28–32�, two of the present
authors have introduced and systematically studied the dy-
namical properties of a self-gravitating gas of Brownian par-
ticles in all spatial dimensions. This is the canonical version
of the original and certainly more challenging problem of

self-gravitating Newtonian particles in the microcanonical
ensemble. In the overdamped limit, the Langevin equation
for the position in real space of a particle reads

dr

dt
= −

��

�
+ f�t� , �23�

where the gravitational potential ��r , t� must be computed
self-consistently using the Poisson equation

	��r,t� = SdG��r,t� , �24�

where Sd is the surface of the unit d-dimensional sphere, and
G is Newton’s constant. The associated Fokker-Planck-
Poisson �or Smoluchowski-Poisson� system is obtained
straightforwardly

��

�t
=

1

�
� �T � � + � � �� , �25�

	� = SdG� . �26�

As discussed in �33�, these equations also describe the
chemotaxis of bacterial populations in biology, by a proper
reinterpretation of the parameters. From now on, we get rid
of nonessential constants by setting

G = � = Sd = 1. �27�

For a time-dependent radial solution, the system of equa-
tions, Eqs. �25� and �26�, can be put into a unique equation
�30�

��

�t
= T	 �2�

�r2 +
d − 1

r

��

�r

 + �2 +

M

rd−1

��

�r
, �28�

where

M�r,t� = �
0

r

��r��r�d−1dr� �29�

is the integrated density. Actually, the equation for M�r , t�
looks even simpler

�M

�t
= T	 �2M

�r2 −
d − 1

r

�M

�r

 +

M

rd−1

�M

�r
. �30�

It is clear that Eqs. �28� and �30� are strikingly similar to the
dynamical equations found in the context of the Bose-
Einstein condensation Eqs. �20� and �22�. Apart from the
identical diffusion term, we note that the nonlinear terms
have the same dimension as �2 in Eqs. �20� and �28� and
dimension M2� �k ,r�−d in Eqs. �22� and �30� �we shall see
later that the +1 term at the end of Eq. �22� is essentially
irrelevant as far as the dynamics of the Bose-Einstein con-
densation at or below Tc is concerned�.

Before summarizing our results concerning the dynamics
of a gas of bosons in d=3 described by Eqs. �20� and �22�,
we would like to mention only the main results obtained for
a self-gravitating Brownian gas obeying Eqs. �28� and �30�.
The comparison with this surprisingly close model will cer-
tainly prove interesting.

�1� In d3, Eqs. �28� and �30� reproduce the known equi-
librium profile for TTc. For T�Tc, a dynamical instability
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arises coinciding with the absence of minimum of the free
energy �thermodynamical instability� �29,30�.

�2� In d3, for T�Tc, the density develops a scaling
profile ��r , t�=�0f�r /r0�, with �0�t�=Tr0

−2�t���tcoll− t�−1 and
f�x��x−2 for x→ +�. Hence, the central density diverges in
a finite time tcoll. Note that f can be calculated analytically in
all dimensions, and that corrections to scaling have been
evaluated �29,30�.

�3� In d3, for T�Tc, and for t tcoll, the central density
is swallowed by an emerging condensate at r=0,
which grows like M0�t���t− tcoll�d/2−1. In this postcollapse
regime, the residual density obeys a backward dynamical
scaling, ��r , t�=�0g�r /r0�, with �0�t�=Tr0

−2�t���t− tcoll�−1

and g�x��x−2 for x→ +�. For large time, the central con-
densate saturates exponentially to the total mass, whereas the
residual density vanishes exponentially with the same rate,
which has been calculated by semiclassical techniques �31�.
We found that the relaxation time � above Tc diverges like
��K+�T−Tc�−1/2, where K+ is known exactly. Approaching
Tc from below, the collapse time tcoll diverges like
tcoll�K−�Tc−T�−1/2, where again K− has been computed
analytically �32�.

�4� In d=2, at Tc, the density obeys a dynamical scaling
with a known scaling function f . The central density diverges
like �0�t��c1 exp�c2

�t�, where c1 and c2 are known univer-
sal constants �30,34� �in an unbounded domain, the diver-
gence is logarithmic instead of exponential �35��. Below Tc,
the collapse dynamics occurs after a finite time tcoll. At tcoll,
a fraction T /Tc of the total mass has condensed at r=0.
Using the Virial theorem, we show that all the mass must
collapse at r=0 in the postcollapse regime �35�. We mention
these results in d=2 because the dynamics of the Bose-
Einstein condensation in d=3 will share some qualitative
analogy with this case.

We thus expect a surprising parallel between the collapse
dynamics of a classical self-gravitating Brownian gas, which
occurs when the kinetic pressure P�T is not strong enough
to counterbalance the gravitational attraction, and a bosonic
gas, which forms a condensate at k=0, when the usual Bose-
Einstein distribution is not able to accommodate for all the
mass, even at zero chemical potential �see Sec. II A�. How-
ever, we note one fundamental difference between these two
systems. For t→ +�, strictly below Tc all the mass collapses
at r=0 in the gravitational case, whereas the mass of the
condensate is temperature-dependent in the case of the Bose-
Einstein transition.

C. Summary of results

In Secs. II A and II B, we briefly review some basic re-
sults concerning the static properties of the Bose-Einstein
condensation, and introduce a simpler model �SM�, for
which the static and dynamical properties can be analytically
studied, and which will be equivalent in the dense region to
the original Bose-Einstein model �BEM� described by Eqs.
�20� and �22�. In Sec. II C, we show that Eqs. �20� and �22�
maximize the rate of dissipation of bosonic free energy, and
that the dynamical instability exactly coincides with the ther-

modynamical instability giving rise to the Bose-Einstein con-
densation below Tc.

In Sec. III, we address the collapse dynamics at and
below Tc. In Sec. III A, we compute the density scaling pro-
file which is found to be independent of the temperature
T�Tc, up to a temperature-dependent multiplicative factor.
In Sec. III B, we show that at T=Tc the central density
�at k=0� diverges exponentially with time, with a rate
which can be calculated analytically. We compute the expo-
nentially decaying corrections to the final Bose-Einstein dis-
tribution with �=0. In Sec. III C, we show that for T�Tc,
the chemical potential vanishes in a finite time and that
�2T��t��c�T��tcoll− t�, where c�T� is computed analytically
close to Tc. We show that tcoll diverges logarithmically as T
approaches Tc from below. In Sec. III D, we address the
specific collapse dynamics obtained strictly at T=0.

In Sec. IV, we study the postcollapse dynamics arising for
T�Tc, and for times t� tcoll. We show that the condensate
mass initially grows linearly, with a slope which can be cal-
culated exactly near Tc. For large times, the mass of the
condensate saturates exponentially fast to its equilibrium
value, with a rate analytically known close to Tc.

In Sec. V, we consider the relaxation time above Tc,
which is computed in different limits. This relaxation time
does not diverge at Tc, but the time after which this relax-
ation regime occurs �that we call the equilibration time� di-
verges logarithmically as the temperature approaches Tc
from above.

II. EQUILIBRIUM PROPERTIES AND A SIMPLER
MODEL IN A BOX

A. Bose-Einstein condensation for a gas of free bosons

Let us briefly repeat the few steps leading to the Bose-
Einstein condensation. Considering free bosons, the equilib-
rium occupation number at momentum k is

�BE�k� =
1

exp��k2

2 + �� − 1
. �31�

The total mass is fixed to unity, and the chemical potential �
is defined implicitly by the total mass constraint �for simplic-
ity, we set the geometrical factor Sd=1, which amounts to
fixing M =Sd=1�

M = �
0

�

�BE�k�kd−1dk = 1, �32�

which can be rewritten as the identity

�d/2 = �
0

� kd−1

exp� k2

2 + �� − 1
dk . �33�

Below a certain temperature Tc, this distribution cannot in-
clude all the mass. The critical temperature corresponds to
�=0. Specializing to the case of dimension d=3 which is the
focus of this paper �there is no condensation for d�3�, we
find
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�c = 	�

2

1/3

�2/3	3

2

, �c  2.20494 . . . , �34�

where ��x�=�k=1
+� k−x is the Riemann �-function. Below Tc,

the momentum distribution is the Bose-Einstein distribution
with �=0 plus a Dirac peak at k=0 containing the excess of
mass M0, with

M0 = 1 − 	�c

�

3/2

�
3

2

Tc − T

Tc
,

T − Tc

Tc
� 1. �35�

Above Tc, we find the following asymptotics which will be
useful later:

� �
9

8�2Tc
−3	T − Tc

Tc

2

,
T − Tc

Tc
� 1, �36�

and

� �
3

2
ln T, T → + � . �37�

B. A simpler model in a box

We now introduce a simpler model �hereafter denoted
SM�, which will share the same properties as our original
model, as far as the condensation dynamics properties are
concerned. In the kinetic equation Eq. �18�, we replace
��+1� with �, which should be valid in the dense region
around k=0, during the formation of the condensate. We
obtain

��

�t
= �k�T�k� + �2k� , �38�

and the following equation for a radial solution

��

�t
= T	 �2�

�k2 +
d − 1

k

��

�k

 + d�2 + 2k�

��

�k
. �39�

The integrated density satisfies

�M

�t
= T	 �2M

�k2 −
d − 1

k

�M

�k

 +

1

kd−2	 �M

�k

2

, �40�

which is even more similar to the dynamical equation Eq.
�30� for a gas of self-gravitating Brownian particles than Eq.
�22�. The stationary solution can be easily calculated

��k� =
1

�k2

2 + �
, �41�

which amounts to replacing the function exp x in the Bose-
Einstein distribution by the function �1+x�. Note that the
distribution �41� is the Lorentzian. Since this distribution
��k� is not integrable up to infinity in d2, we introduce a
momentum cutoff

k � � . �42�

As before, the total mass constraint reads

M = �
0

� kd−1

�k2

2 + �
dk = 1. �43�

From now on, we set d=3, as well as in the rest of the paper.
Then, the integrated density can be explicitly calculated

M�k� = 2T�k − �2�T arctan	 k
�2�T


� . �44�

The density profile Eq. �41� can accommodate for all the
mass up to the temperature

�c = 2� . �45�

Below Tc, a Dirac peak appears at k=0, containing the ex-
cess mass

M0 =
Tc− T

Tc
. �46�

Just above Tc, the chemical potential vanishes in a manner
similar to the original Bose-Einstein model �BEM�,

� �
1

2�2Tc
−3	T − Tc

Tc

2

,
T − Tc

Tc
� 1, �47�

whereas at high temperatures, the two models are qualita-
tively different, as the particle’s momentum cannot spread up
to infinity in the SM. Hence the chemical potential converges
at high temperatures

� →
�3

3
, T → + � . �48�

C. Some properties of the bosonic Fokker-Planck
equation

Equation �18� belongs to a general class of nonlinear
Fokker-Planck �NFP� equations considered by Kaniadakis
�17�, Frank �36�, and Chavanis �37�. These nonlinear Fokker-
Planck equations arise when the coefficients of diffusion,
mobility, and friction depend explicitly on the distribution
function. There are different ways to write these NFP equa-
tions. One convenient form for our present purposes is �37�

��

�t
= − � · J* = ��1

�
	T � � +

1

C����
� �
� , �49�

where C��� is a convex function and ��0 can depend
on r and t, e.g., on ��r , t�. Here, ��r� is a fixed
external potential but we can also consider the situation
where ��r , t� is generated by ��r , t� �37�, like in the case of
self-gravitating Brownian particles �see Sec. I B�. Taking
C���=� ln �− 1


 �1+
��ln�1+
��, we recover the bosonic
Fokker-Planck equation �18� for 
= +1, the fermionic
Fokker-Planck equation for 
=−1, and the classical Fokker-
Planck equation for 
=0 �for other values of 
, this de-
scribes intermediate “quon” statistics�. For the simpler model
Eq. �38�, we have C���=−ln � describing logotropes �38�.
Introducing a generalized free energy
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F = E − TS =� ��dr + T� C���dr , �50�

one can show that F�t� is monotonically decreasing:

Ḟ=−��C����J*
2dr�0. Therefore, if F is bounded from be-

low, the density ��r , t� will converge, for t→ +�, to the sta-
tionary solution �eq�r� such that J*=0 �in that case F is
called a Lyapunov functional�. The stationary solution of Eq.
�49� is determined by

�eq�r� = �C��−1�− ���r� − �� , �51�

where �=1/T and � is an integration constant. This
stationary solution is a critical point of free energy Eq. �50�
at fixed mass, i.e., it satisfies �F+�T�M =0, where �T
is a Lagrange multiplier. Moreover, it is shown in �37�
that a stationary solution of Eq. �49� is linearly dynamically
stable if, and only if, it is a minimum of F at fixed mass.
In fact, when ��r� is an external potential, the critical
points of F at fixed mass are necessarily minima since
�2F= 1

2T�C��������2dr0. Therefore, if a critical point of
free energy exists it is the only minimum of F and, conse-
quently, F is bounded from below: F���F��eq�. In that
case, the dynamical equation, Eq. �49�, will relax towards
�eq�r� for t→ +�.

The NFP equation, Eq. �49�, can be justified in several
different ways �37�. It can be obtained from the linear
thermodynamics of Onsager by relating the current to the
gradient of a “chemical potential” ��r , t�=−���r�−C����
that is uniform at equilibrium �see Eq. �51��, writing
J*=1/ ���C�������. The current can also be expressed
as the functional derivative of the free energy, writing
J*=−1/ ��C������ ��F /���. Alternatively, the NFP equation
can be obtained by writing �t�=−� ·J and looking for
the optimal current J* which maximizes the rate of free

energy dissipation Ḟ�J�=��TC������+���Jdr for a
bounded function Ed�J�= 1

2 ��C����J2dr preventing arbi-
trarily large values of the current J. This is the variational
version of the linear thermodynamics of Onsager. The opti-

mal current, that is solution of �Ḟ+�Ed=0, is the one appear-

ing in Eq. �49� and it satisfies Ḟ�J*�=−2Ed�J*��0. It indeed

leads to the most negative value of Ḟ �under constraints�
since �2�Ḟ+Ed�=�2Ed= 1

2 ��C������J�2dr0. These meth-
ods emphasize the �generalized� thermodynamical structure
of the NFP equation.

III. COLLAPSE DYNAMICS

A. General scaling solutions for T�Tc

We now consider the collapse dynamics occurring when
the system is suddenly quenched to Tc or below Tc from high
temperature. It is clear that both considered models should
behave in a similar manner near the dense region at k=0. Let
us first consider the condensation dynamics of the SM. We
write

M�k,t� = 2T�k − k0 arctan	 k

k0

� + F�k,k0� , �52�

where k0�t� is uniquely defined by the condition

��k = 0,t� =
2T

k0
2 , �53�

ensuring that

F�k → 0,k0� � k5. �54�

The normalization condition reads

M�k = �,t� = 1 = 2T�� − k0 arctan	�

k0

� + F��,k0� .

�55�

We now look for a scaling solution of the form

F�k,k0� = k0
�f	 k

k0

 , �56�

and introduce the scaling variable

x =
k

k0
. �57�

This leads to

M��k,t� = k2��k,t� =
2Tk2

k2 + k0
2 + k0

�−1f�	 k

k0

 , �58�

where, from now on, M��k , t� will denote the derivative with
respect to momentum. In analogy with the equilibrium den-
sity Eq. �41�, we observe that ��t�=�k0

2�t� /2 can be seen as
an effective chemical potential which is expected to vanish
as time increases.

In d=3, the dynamical equation for M�k , t� is

�M

�t
= T	M� −

2

k
M�
 +

M�2

k
. �59�

Inserting the scaling ansatz, we find

�M

�t
= k0

�−2T	 f� + 2
x2 − 1

x�x2 + 1�
f�
 + k0

2�−3 f�2

x

= − 2k̇0T	arctan�x� −
x

x2 + 1

 + k̇0k0

�−1��f − xf�� .

�60�

It is clear that for �=1, all the terms of this equation

scale the same way, if one chooses k̇0�k0
−1, i.e.,

k0�t���tcoll− t�1/2. However, we were able to prove analyti-
cally that all the solutions of the resulting scaling equation
are nonphysical, leading to a density going to a constant for
k�k0. In addition, when we wrote Eq. �52�, we implicitly
assumed that the second term of the right-hand side �RHS� is
a correction to the first one, which implies ��1. Hence we
now consider ��1, and matching the leading terms of Eq.
�60�, we conclude that
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k̇0 = − ck0
�−2, �61�

and that the scaling function introduced above satisfies

f� + 2
x2 − 1

x�x2 + 1�
f� = 2c	arctan�x� −

x

x2 + 1

 , �62�

which can be integrated once, leading to

f��x� =
2c

3

x

�x2 + 1�2 ��x4 + 6x2 − 3�arctan�x� + 3x − 2x3

− 4x ln�x2 + 1�� . �63�

Note that f��x� /x2 is exactly the scaling function for the den-
sity as can be seen from Eq. �58�. We give below some
asymptotic results for f�x� which will prove useful later:

f�x� =
�c

6
x2 −

4c

3
x + 2�c ln x + O�1�, x → + � �64�

=
2c

15
x5 −

8c

45
x7 +

227c

1260
x9 + O�x11�, x → 0. �65�

Let us now analyze the validity of the scaling regime. We ask
that the neglected terms in Eq. �60� remain small in the range
k0�k��. Using the large x asymptotic for f�x�, we find
that the nonlinear term in f appearing in Eq. �60� can be
neglected, if

k0
2�−3 f�2

x
� k0

�−2 Þ k � k0
−��−2�, �66�

implying �2. Similarly, the term arising from the time
derivative of the residual density is negligible provided that

k̇0k0
�−1��f − xf�� � k0

�−2 Þ k � k0

3−�
2 �� � 2� �67�

Þk � � �� = 2� , �68�

which implies that �3 or �=2. We will find in the next
sections that the admissible values �=3 and �=2 are in fact,
respectively, associated to the collapse dynamics at Tc and
strictly below Tc.

We would like to emphasize that the present model pro-
vides an interesting example where one obtains a scaling
solution which scales differently from what would have been
obtained from a naive power counting, assuming that all
terms in Eq. �60� scale the same way �which would lead to
�=1�.

B. Collapse at T=Tc

At Tc, the constant appearing in the scaling function is
denoted cc. Expressing the conservation of mass, we find

1 − 2Tc�� − k0 arctan	�

k0

� = F��,k0� � k0

�f	�

k0

 ,

�69�

�

2
�−1k0 �

�cc

6
�2k0

�−2 + O�k0
2� , �70�

which implies that

� = 3, cc � �−3 � Tc
3. �71�

Inserting this value for � in Eq. �61�, we find that k0�t� de-
cays exponentially at Tc, with a rate cc. To complete the
computation of the scaling function, we need to determine
the constant cc appearing as a prefactor in Eq. �63�, and
which also controls this exponential decay. Although the
functional form of the scaling functions is identical for the
SM and BEM, we will see that the constant cc will differ for
both models, as this constant is not entirely determined by
the dynamics in the region of high density, where the term
��+1� can be safely replaced by �. To make this point
clearer, we now look for a global solution for the correction
term F�k ,k0�, valid for momentum much greater than k0, and
up to k=�:

F�k,k0�  k0��k�, k0 � k � � . �72�

Note that the large x= k
k0

asymptotic of the scaling function
should match the small k behavior of ��k�:

k0��k��k→0k0
3f	 k

k0

�k�k0

�cc

6
k0k2. �73�

For the SM, expanding the integrated density up to leading
order in k0

M�k,t� = 2Tc	k −
�

2
k0
 + k0��k� + O�k0

2� , �74�

we immediately find that

���� = �Tc. �75�

On the other hand, substituting Eq. �74� into Eq. �40� we
obtain to leading order in k0:

�M

�t
= k0Tc	�� +

2

k
��
 = k̇0���k� − �Tc� = − cck0���k�

− �Tc� , �76�

so that ��k� satisfies

�� +
2

k
�� − �ccc����� − �� = 0. �77�

This equation admits the solution

��k� = �Tc	1 −
sin���ccck�

��ccck

 , �78�

and expressing the condition of Eq. �75�, we determine cc
and the full function ��k�

cc = 4�2Tc
3, ��k� = �Tc	1 −

sin��k/��
�k/�


 . �79�

It is straightforward to check that ��k� obeys the small k
behavior of Eq. �73�, identical to the k�k0 behavior of the
scaling function f .
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Finally, the collapse at Tc for the SM has been fully ana-
lyzed, and the central density �53� diverges as

��0,t� = 2Tck0
−2�t� � exp�8�2Tc

3t� . �80�

For infinite time, one converges to the expected equilibrium
solution

M�k, � � = 2Tck, ��k, � � = 2Tck
−2. �81�

Now, this approach can be repeated for the BEM, starting
with a similar ansatz

M�k,t� = �
0

k k�2

exp��c
k�2+k0

2

2 � − 1
dk� + k0��k� , �82�

where ��t�=�ck0
2 /2 acts like a time-dependent chemical po-

tential. For k�k0, we find that

�
0

k k�2

exp��
k�2+k0

2

2 � − 1
dk� = �

0

k k�2

exp�� k�2

2 � − 1
dk� − �Tk0

+ O�k0
2� . �83�

Using the above result, we can insert the expression of
M�k , t� from Eq. �82� into the dynamical equation, Eq. �59�,
and find up to the leading order in k0

�M

�t
= k0Tc��� + 	 �ck

tanh��ck
2

4 � −
2

k
���
= k̇0���k� − �Tc� = − cck0���k� − �Tc� , �84�

or, after simplification,

�� + 	 �ck

tanh��ck
2

4 � −
2

k
�� − �ccc����� − �� = 0, �85�

with

���� = �Tc. �86�

Now, cc is selected by imposing that ��k� is an increasing
function �being the integral of a density� and that one gets a
fast decay of ����−��k��exp�−�k2 /2�. Solving this eigen-
value problem numerically, we find

cc = 1.38452425 . . . = C�2Tc
3, C = 1.50380614. . .

�87�

which leads to

��0,t� = 2Tck0
−2�t� � exp�2C�2Tc

3t� . �88�

In Fig. 1, we have plotted the function ��k� for the BEM,
compared to its analytical counterpart for the SM. As ex-
pected, they significantly differ only for large momenta. In
Fig. 2, we numerically confirm the exponential growth of the
density of particles at k=0 for both considered models, with
the growth rate cc in perfect agreement with the present the-
oretical analysis. Finally, in Fig. 3, we illustrate the scaling
behavior of the density profile.

C. Collapse for 0�T�Tc

We now repeat the above procedure below Tc. For the SM
model, expressing conservation of mass, we obtain

1 − 2T�� − k0 arctan	�

k0

� = F��,k0� � k0

�f	�

k0

 ,

�89�

Tc − T

Tc
�

�c

6
�2k0

�−2 + O�k0� , �90�

which implies that

� = 2, c�T� � Tc�Tc − T� . �91�

For this value of �, Eq. �61� can be integrated, leading to

FIG. 1. We plot the analytical expressions of ��k� �see Eq. �79�,
dashed line� for the simplified model compared to the numerical
solution of Eq. �85� �full line�. We have chosen the size of the
confining box to be �=1.79805. . . so that the small k behavior of
the two functions coincides.

FIG. 2. At T=Tc, we plot �1/2�k=0, t��k0
−1�t��exp�cct� com-

puted numerically by integrating the dynamical equation for M�k , t�
�see Eq. �59��, for the SM ��=1, top full line� and the BEM �bot-
tom full line�. In both cases, we find an exponential growth, with a
rate in perfect agreement with our exact results for cc �the straight
dashed lines in these semilog plots have a slope equal to the theo-
retical values for cc�. For both models, we obtain an excellent fit of
�1/2�k=0, t� to the functional form �1/2�k=0, t�=A exp�cct�−B, with
A�5.7 and B�0.5 �fit not shown, but indistinguishable from data
starting from t�0.2�.

SOPIK, SIRE, AND CHAVANIS PHYSICAL REVIEW E 74, 011112 �2006�

011112-8



k0�t� = c�T��t − tcoll� . �92�

We thus find that, below Tc, a singularity should arise in a
finite time, for which the central density diverges when t
goes to tcoll.

In order to obtain analytical results, we focus on the col-
lapse dynamics just below Tc, so that

T−Tc

Tc
�1, hence

F�k ,k0��1 and c�1. In this regime, nonlinear terms in F
can be safely neglected. For momenta k�k0, we define a
function ��k� such that

F�k,k0�  	1 +
�

c
k0
��k�, k0 � k � � , �93�

resulting in the following expression for the integrated mass
density:

M�k,t� = 2T	k −
�

2
k0
 + 	1 +

�

c
k0
��k� + O�k0

2� . �94�

Taking k=� and matching terms of order O�k0
0� and O�k0

1�,
we deduce that

���� =
Tc − T

Tc
= �

c

��
. �95�

Inserting the expression of M�k , t� in the dynamical equation
Eq. �59�, we obtain

�M

�t
= T	�� +

2

k
��
 = �cT − �� , �96�

or

�� +
2

k
�� − ������� − �� = 0. �97�

We recognize the very same equation for ��k� as in the pre-
ceding section, so that the two functions are identical up to a
multiplicative constant. Hence, for the SM, we obtain

� = cc = 4�2Tc
3, c�T� = 4�Tc�Tc − T� , �98�

��k� =
Tc − T

Tc
	1 −

sin��k/��
�k/�


 ,

and a power law divergence of the central density

��0,t� = 2Tk0
−2�t� �

1

8�2Tc
3	Tc − T

Tc

−2

�tcoll − t�−2. �99�

For the SM, we can evaluate ��k�, c�T�, and ��T� at the

next order in �=
Tc−T

Tc
. We write

��k� = ��0�k� + �2�1�k� , �100�

c�T� = �c0 + �2c1, �101�

��T� = �0 + ��1, �102�

where �0�k�, c0, and �0=cc can be easily determined from
Eq. �98�. Inserting the above ansatz in the dynamical equa-
tion leads to a complicated linear equation for �1�k�. We
must impose the boundary conditions �1�0�=�1��0�=0 and
�1���=0, which fix the value of c1 and �1. After some cum-
bersome but straightforward calculations, we obtain

�1	x = �
k

�

 =

sin x

x � c1

8�Tc
2	1 +

� − x

tan�x�
 +
2� cos�x�

3x

+
3�

4 tan�x�	��

x cos�t�
t

dt − �
3�

3x cos�t�
t

dt

+

�

4 	3�
3x

+� sin�t�
t

dt −
11

3
�

x

+� sin�t�
t

dt

+

��cos�2x� − 1�
6x2 sin�x� � , �103�

with

c1 =
2�Tc

2

3 	9 ln�3� − 4 − 9�
�

3� cos�t�
t

dt
 �104�

=C1Tc
2, C1 = 13.51919467982. . . �105�

and

�1 = �C1Tc
3. �106�

Finally, we obtain

c�T� = 4�Tc�Tc − T� + C1�Tc − T�2 + O��T − Tc�3� ,

�107�

��T� = 4�Tc
3 + �C1Tc

2�Tc − T� + O�Tc�T − Tc�2� , �108�

and note that the next correction to c�T� and ��T� are both
positive.

Again, this approach can be repeated for the more realistic
BEM, by writing

FIG. 3. At T=Tc, we plot �2Tc�−1k0
2��k , t� as a function of

x=k /k0 for the BEM, for times for which the central density
��0, t�=2Tck0

−2 is equal to 100�2n �n=1, . . . ,14�. We have also
plotted the corresponding scaling function 1/ �1+x2� �dashed line�,
which is perfectly superimposed with the data collapse. A similar
plot for the SM would be indistinguishable, for the scale of momen-
tum shown. Below Tc, a similar scaling arises for both models.
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M�k,t� = �
0

k k�2

exp��
k�2+k0

2

2 � − 1
dk� + 	1 +

�

c
k0
��k� .

�109�

At the leading order in k0, the dynamical equation, Eq. �59�,
leads to

�M

�t
= T��� + � �k

tanh	�k2

4

 −

2

k���� = �cT − �� ,

�110�

or more simply to

�� + � �k

tanh	�k2

4

 −

2

k��� − ������� − �� = 0,

�111�

which is again the same equation as the one found in the
previous section, which determines the function ��k� up to a
multiplicative constant. In order to compute this constant, we
have to match the terms of order O�k0

0� and O�k0
1� for

k→ +� in Eq. �109�, which implies that

���� = 1 − 	�c

�

3/2


3

2

Tc − T

Tc
�112�

=�
c

��
. �113�

Finally, we obtain

� = cc = C�2Tc
3, c�T� = C��Tc�Tc − T� , �114�

C� =
3C

2
= 2.2557092066. . .

and

��0,t� = 2Tk0
−2�t� �

2

C�2�2Tc
3	Tc − T

Tc

−2

�tcoll − t�−2.

�115�

Note that at t= tcoll, we find that the density and the inte-
grated density are

��k,tcoll� =
2T

k2 +
���k�

k2 , M�k,tcoll� = 2Tk + ��k�

�116�

for the simplified model, and

��k,tcoll� =
1

exp	�
k2

2

 − 1

+
���k�

k2 , �117�

M�k,tcoll� = �
0

k k�2

exp	�
k�2

2

 − 1

dk� + ��k�

for the more realistic Bose-Einstein model. In addition to
the equilibrium density, we obtain in both models a singular
contribution near k=0

���k�
k2 �

�

3k
c�T�, k → 0. �118�

However, we do not observe the appearance of a Dirac peak
at k=0, implying that the evolution of the system is not
finished yet. Hence, we expect that after tcoll, the mass in-
cluded in ��k� will be swallowed at k=0, finally giving rise
to the condensate.

Before addressing this issue, we give an estimate of tcoll,
near Tc. If one is very close to Tc, the density first grows
exponentially like at Tc, before crossing over to the behavior
of Eq. �115�, when the time is of order tcoll. Matching the two
regimes, we obtain

��k = 0,t � tcoll� � exp�2cctcoll� � 	Tc − T

Tc

−2

tcoll
−2 ,

�119�

leading to the rough estimate

tcoll � Tc
−3 ln	 Tc

Tc − T

 . �120�

As expected, tcoll diverges as the temperature approaches Tc.

This analysis suggests a global form for k̇0�t�, valid for all
temperature

k̇0 = − c�T�h	 cc

c�T�
k0
, h�0� = 1, h�x���x , �121�

where c�T��Tc�Tc−T� for both models. If we assume the
simple form h�x�=1+x �numerically we find h�x�=1+Ax,
for small x; see Fig. 5�, which is compatible with the known
asymptotics of f�x� in Eq. �121�, we obtain

k̇0 = − cck0 − c�T� . �122�

This equation has a global solution

k0�t� =
c�T�
cc

�exp�cc�tcoll − t�� − 1� . �123�

For times t close to tcoll, this expression leads to the
asymptotic scaling of Eq. �92�, whereas it also reproduces
the early exponential decay with rate cc, which is expected
for T close to Tc. Imposing that at t=0, k0 should be of order
of a typical momentum of the initial condition �for instance
k0�� for the SM�, we recover exactly the estimate of tcoll
obtained in Eq. �120�.

In Fig. 4, we plot the numerical estimate of ��k� obtained
by numerically integrating Eq. �59� at T=0.9Tc, and compare
it to our theoretical results, which are, in principle, only valid

very close to Tc. In Fig. 5, we plot k̇0�t�→−c�T� obtained by
numerically integrating Eq. �59� and find a fair agreement
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with our theoretical estimates for c�T�, which are strictly
valid only close to Tc.

D. Collapse at T=0

For completeness, we now consider the collapse dynamics
at T=0. Since we are interested in the density scaling func-
tion, we address this question within the simplified model.
We consider the dynamical equation for the density rather
than for the integrated density

��

�t
= 3�2 + 2k���. �124�

Inserting a scaling ansatz of the form

��k,t� = �0g	 k

k0

 , �125�

in the dynamical equation Eq. �124�, we obtain

�̇0g − �0
k̇0

k0
xg� = �0

2�3g2 + 2xgg�� . �126�

We introduce the parameter � defined by

�̇0

�0
= − �

k̇0

k0
= ��0. �127�

Then, the equation for the scaling function becomes

1 − 2g

g�� − 3g�
g� = −

1

x
, �128�

which can be exactly solved, leading to the following im-
plicit equation for g�x�:

g�x�	�

3
− g�x�
2�/3−1

= Cx−�, �129�

where C is a constant depending on the initial conditions, as
was already noticed within the study of the gravitational col-
lapse at T=0 �29–31�. Now, for small x=k /k0, g�x� must be
an analytic function, with a small x expansion of the form
g�x�=g�0�+g��0�x2 /2+¯. Matching the small x behavior of
the right-hand side and left-hand side of Eq. �129�, we obtain

� =
6

7
, g�0� =

2

7
, �130�

and

g�x�	2

7
− g�x�
−3/7

= Cx−6/7. �131�

We also obtain the exact expression for the central density,
and the time-dependent width of the dense core k0�t�

��k = 0,t� =
2

7
�0�t� =

1

3
�tcoll − t�−1, k0�t� = �tcoll − t�7/6.

�132�

Finally, at t= tcoll, the small k behavior of the density be-
comes universal

M�k,tcoll� � k15/7, ��k,tcoll� � k−6/7, �133�

in contrast with the behavior obtained for 0�T�Tc, where
we found ��k , tcoll��2Tk−2.

IV. POSTCOLLAPSE DYNAMICS FOR 0�T�Tc

As mentioned in Sec. III C, the density profile at t= tcoll is
not yet equal to the equilibrium profile which presents a
Dirac peak at k=0. This means that after tcoll, the density
profile should continue to relax to

��k� =
Tc − T

Tc
��k� + 2Tk−2 �134�

for the simplified model, and

FIG. 4. For the simplified model, we plot ��k�=M�k , tcoll�
−2Tk obtained by numerically integrating the dynamical equation
for M�k , t� at T=0.9Tc �top full line�. We have chosen �=1

so that Tc=1/2 and ����=
Tc−T

Tc
=1/10 �see Eq. �95��. It is in

good agreement with our analytical expression of Eq. �98�
�top dashed line�, which is strictly valid only very close to Tc.
We also plot the numerical �bottom full line� and theoretical expres-
sion of ��k� �bottom dashed line�, for the Bose-Einstein model
����= � �=1−27/103/2=0.1462. . .  3

2
Tc−T

Tc
�.

FIG. 5. For the simplified model ��=1, bottom line� and the

Bose-Einstein model �top line�, we plot k̇0�t�→−c�T� as a function
of k0�t� as obtained by integrating the dynamical equation for
M�k , t� at T=0.9Tc. The theoretical slopes −c�T� evaluated at the
first order in Tc−T are indicated by an arrow. We find that
the numerical value of c�T� is slightly bigger than our first order
calculation, consistent with the fact that the next correction is
analytically found to be positive for the SM �see Eq. �107��. For

small k0�t� �i.e., close to tcoll�, we find k̇0�t�−c�T�−Acck0�t�, with
A1.35 for the SM, and A1.65 for the BEM.
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��k� = �1 − 	�c

�

3/2���k� +

1

exp	�
k2

2

 − 1

�135�

for the Bose-Einstein model. In order to obtain analytical
results in this postcollapse stage, we again consider the case
of a temperature just below Tc, such that

Tc − T

Tc
� 1. �136�

In this regime, and for the SM, the following ansatz is an
exact solution of the dynamical equation, Eq. �59�

M�k,t� = M0�t� + 2Tk + 	1 −
M0�t�
����


��k� , �137�

where M0�t� is the time-dependent mass in the condensate,
and where ��k� has been calculated in the collapse regime in
the previous section. Inserting this ansatz in the kinetic equa-
tion, we obtain

�M

�t
= Ṁ0	1 −

��k�
����


 = T	1 −
M0�t�
����


	�� +
2

k
��
 ,

�138�

where we have neglected quadratic terms in ��k�, which is
justified near Tc. For this equation to be compatible with Eq.
�97�, i.e., the defining equation for ��k�, we must have

Ṁ0 = cc����� − M0�t�� , �139�

which can be easily solved, leading to the full time depen-
dence of the condensate mass M0�t�

M0�t� =
Tc − T

Tc
�1 − exp�− 4�2Tc

3�t − tcoll��� . �140�

For the Bose-Einstein model, we proceed in a similar man-
ner, and find for T close to Tc

M0�t� = �1 − 	�c

�

3/2��1 − exp�− C�2Tc

3�t − tcoll���

�141�


3

2

Tc − T

Tc
�1 − exp�− C�2Tc

3�t − tcoll��� �142�

For both models, the condensate mass initially grows linearly
with time

M0�t� = �Tcc�T��t − tcoll� � Tc
2�Tc − T��t − tcoll� ,

�143�

t − tcoll � Tc
−3,

whereas it saturates exponentially fast to its equilibrium
value, with a rate cc equal to the relaxation rate found at Tc
�see Sec. III B and the next section�, since one can write

1 −
M0�t�
M0���

= exp�− cc�t − tcoll�� . �144�

V. RELAXATION TIME FOR T�Tc

Finally, in this section, we address the problem of deter-
mining the relaxation rate to the equilibrium solution above
Tc. Writing

M�k,t� = �
0

k k�2

exp	�k�2

2
+ �
 − 1

dk� + ��k�exp�− t/�� ,

�145�

and neglecting nonlinear terms in ��k�, we find that

��k� = h���k� , �146�

where h�x� satisfies

h� + � x

tanh	 x2

4
+

�

2

 −

2

x�h� + �−1h = 0. �147�

For T�Tc �and hence ��1�, we can replace tanh by unity
and the solution can be exactly written in terms of the Kum-
mer confluent hypergeometric function K

h�x� = x3K	3� + 1

2�
,
5

2
,−

x2

2

 . �148�

Imposing a fast decaying solution, we find

h�x� = x3 exp	−
x2

2

, ��T → + � � =

1

2
. �149�

For the simplified model, the limit of high temperature is not
physically interesting since, due to the finite box, the par-
ticles cannot spread up to large momenta.

For 0�T−Tc�Tc �and hence ��1�, the eigenequation,
Eq. �147�, coincides with the defining equation for the func-
tion ��k� introduced in Sec. III B. Hence ��T→Tc�=cc

−1, us-
ing the respective values of cc for the two models considered.

It seems paradoxical that the relaxation time does not di-
verge at Tc, contrary to what is expected for a continuous
phase transition. However, � is not the equilibration time,
which is the typical time �eq needed to reach the equilibrium
solution. This time can be evaluated by considering that
close but above Tc, the chemical potential initially decreases
as �k0�t�2 /2 does at Tc, and reaches the order of magnitude
of its equilibrium value after a time �eq. Thus we write

k0��eq,Tc� � exp�− cc�eq� � k0�T� = �2�T . �150�

Using the expressions for � near Tc given in Eq. �36� for the
BEM and in Eq. �47� for the SM, we obtain

�eq � − Tc
−3 ln � � Tc

−3 ln	 Tc

T − Tc

 �151�

for both models. Note the similarity of this estimate with the
expression of tcoll near Tc, given in Eq. �120�. The exponen-
tial relaxation controlled by � only starts after a time of order
�eq��.
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VI. COMPARISON WITH OTHER WORKS

In this section, we give a short review of classical works
concerning the dynamics of the Bose-Einstein condensation
to show how our results compare with these studies. The
dynamics of the Bose-Einstein condensation has been de-
scribed by two apparently different kinetic theories. The first
kinetic theory is based on a quantum version of the Boltz-
mann equation for the one-particle distribution function
��k , t�. This is a semiclassical approach which introduces
corrections for quantum statistics into the ordinary Boltz-
mann collision term �10–12�. Another description is provided
by the time-dependent Gross-Pitaevskii equation for the con-
densate wave function ��x , t� �order parameter for the Bose
condensate� in a spatially homogeneous medium �39�. This
equation does not take into account quantum fluctuations, or
thermal or irreversible effects, but is valid when a large num-
ber of particles have condensed.

One of the first solutions of these kinetic equations is due
to Levich and Yakhot �40� who consider a gas of bosons
without interaction �i.e., neglecting collisions� in contact
with a thermal bath of fermions. They provide an analytical
solution of the corresponding quantum Boltzmann equation
and find that the Bose condensate forms in an infinite time.
Since this result is inconsistent with observations, Stoof �41�
argues that the quantum Boltzmann equation is not valid to
describe the condensate. He considers an isolated gas of
bosons in interaction �i.e., with interatomic collisions� and
argues that the dynamics of the collapse follows three steps:
�i� an incoherent evolution described by the quantum Boltz-
mann equation, �ii� a coherent evolution triggering a phase
transition �instability� leading to the Bose condensate, and
�iii� a thermalization between the condensate and the non-
condensed atoms interpreted as quasiparticles in the sense of
Bogoliubov. Stoof focuses on the coherent evolution. Using a
functional formulation of the Keldysh theory, he derives a
time dependent Landau-Ginzburg equation for the order pa-
rameter ���x , t�� of the phase transition. He also shows that
the transition temperature for interacting bosons is larger
than for an ideal gas and that the nucleation of the conden-
sation is short, contrary to the result of �40�, except for tem-
peratures close to the critical temperature Tc. In a more re-
cent paper, Stoof �42� derives a Fokker-Planck equation for
the probability distribution of the order parameter ���x , t��
which gives a unified description of both the incoherent �ki-
netic Boltzmann� and coherent �Gross-Pitaevskii� stages of
Bose-Einstein condensation. A similar program of unification
of the two theories is carried out by Gardiner and Zoller �43�.
Using a projection of the density operator �, they derive a
quantum kinetic master equation �QKME� for bosonic atoms
and recover, in particular limits, the quantum Boltzmann
equation and the Gross-Pitaevskii equation.

Semikoz and Tkachev �13� and Lacaze et al. �14� numeri-
cally solve the quantum Boltzmann equation and find the
formation of a condensate in finite time and the growth of
this condensate in a postcollapse regime. This is quite differ-
ent from the results of Levich and Yakhot �40� which are
valid when the system is coupled to a bath of fermions.
Therefore the original bosonic Boltzmann kinetic equation

�without fermion bath approximation� can account for a fi-
nite time formation of the condensate. More recently, using
an analogy with optical turbulence, Connaughton and
Pomeau �44� obtain a kinetic equation for the spectral par-
ticle density ��k , t� directly from the Gross-Pitaevskii equa-
tion for the wave function ��x , t� when the nonlinear term is
considered as a perturbation �k is the conjugate of x in the
Fourier analysis�. They show that this kinetic equation has
the same form as the quantum Boltzmann equation.

Several authors �13,14,45,46� have investigated
self-similar solutions of the quantum Boltzmann equation
in the form ��� , t�=�0�t�f�� /�0�t��, where �= k2

2m . In particu-
lar, Semikoz and Tkachev �13� find a precollapse regime
generating, in a finite time tcoll, a distribution function
of energies scaling as f�����−� with �=1.24. This profile
is slightly steeper than the Zakharov profile �−7/6 providing
an exact static solution of the quantum Boltzmann equation
corresponding to a constant mass flux J in momentum
space toward the condensate. The central density increases
as �0�t���tcoll− t�−�/2��−1���tcoll− t�−2.6 and becomes infinite
at t= tcoll. The typical core energy �0�t���tcoll− t�1/2��−1�

��tcoll− t�2.1 goes to zero at t= tcoll. Semikoz and Tkachev
�13� also investigate the postcollapse regime. They find that
the energy distribution passes from �−� to �−1 after the sin-
gularity and that the mass of the condensate grows like
n0�t�= �t− tcoll��3−2��/4��−1���t− tcoll�0.54 just after collapse.
Lacaze et al. �14� also investigate self-similar solutions and
obtain similar results with an exponent �=1.234.

Our approach is physically different since we consider a
gas of noninteracting bosons in contact with a heat bath es-
tablishing a Bose-Einstein distribution �canonical descrip-
tion� while the previous authors considered an isolated sys-
tem of bosons in interaction �microcanonical description�.
However, although the dynamics differ in the details �as ex-
pected�, the phenomenology of the collapse is almost the
same and the simplified form of our kinetic equation �18�
allows for a complete analytical solution of the problem �pre-
and post-collapse� which is not possible for the quantum
Boltzmann equation �13,14,45,46�. This is clearly an interest
of our model.

VII. CONCLUSION

In the present paper, we have considered the condensation
in k-space of a homogeneous gas of noninteracting bosons in
a thermal bath fixing the temperature T. In statistical me-
chanics, this corresponds to a canonical description. We have
pointed out the striking analogy between the dynamical
equation describing the Bose-Einstein condensation in the
canonical ensemble and the one describing the evolution of a
self-gravitating gas of Brownian particles �or the chemotaxis
of bacterial populations�.

In analogy to the case of a classical gas, we have con-
structed the dynamical Fokker-Planck equation for the mo-
mentum distribution. For T�Tc, the system experiences a
finite time singularity, i.e., the density at k=0 becomes infi-
nite in a finite time tcoll�Tc

−3 ln� Tc

T−Tc
�. However, the “singu-

larity contains no mass” and the condensate is formed during
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the postcollapse regime for t� tcoll. This dynamical scenario
leads, for t→ +�, to a Dirac peak in addition to the Bose-
Einstein distribution with zero chemical potential, which is
entirely consistent with the distribution predicted by Einstein
at equilibrium �9�. Our canonical description permits a com-
plete analytical treatment for the different stages of the pro-
cess, contrary to the microcanonical approach starting from
the semiclassical Boltzmann equation �13,14�, where one has
to mostly rely on numerical simulations. Although qualita-
tively similar �existence of a finite time precollapse regime
for t� tcoll, scaling behavior of the density, formation of the
condensate in the postcollapse regime,¼�, we note that our
results differ quantitatively from the ones obtained within the
microcanonical approach. For instance, k0�t�=c�T��tcoll− t� in
our canonical model, whereas k0�t���tcoll− t�� in the micro-
canonical ensemble, where, numerically, one finds �1.07
�the difference is even more apparent on other quantities�
�14�. This should not be surprising, as the same phenomenon
arises in the study of the collapse dynamics of a self-
gravitating gas, which is different in the canonical and mi-
crocanonical ensembles, though qualitatively similar in many
respects �29�.

In this paper, we have assumed that the Bose gas is ho-
mogeneous. The inhomogeneous situation could be studied

semiclassically by introducing a mean-field advective term in
the kinetic equation such that

��

�t
+ k

��

�r
− �U�r�

��

�k
= Q��� , �152�

where Q��� is either the bosonic Fokker-Planck operator of
Eq. �18� in the presence of a thermal bath, or the bosonic
Boltzmann operator when elastic collisions are taken into
account. An even more general model could take into ac-
count both contributions, or include additional semiclassical
contributions arising from the fact that the operators r and k
do not commute.

As a final comment, we may note that there exists analo-
gies between the Bose-Einstein condensation and the inverse
cascade process in two-dimensional turbulence where energy
accumulates at large scales �k=0� to form a macrovortex
�47�.
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